Как сделать график синуса в excel?

Как построить график синуса в excel

Функция SIN в Excel используется для вычисления синуса угла, заданного в радианах, и возвращает соответствующее значение.

Функция SINH в Excel возвращает значение гиперболического синуса заданного вещественного числа.

Функция COS в Excel вычисляет косинус угла, заданного в радианах, и возвращает соответствующее значение.

Функция COSH возвращает значение гиперболического косинуса заданного вещественного числа.

Примеры использования функций SIN, SINH, COS и COSH в Excel

Пример 1. Путешественник движется вверх на гору с уклоном в 17°. Скорость движения постоянная и составляет 4 км/ч. Определить, на какой высоте относительно начальной точке отсчета он окажется спустя 3 часа.

Для решения используем формулу:

  • B2*B3 – произведение скорости на время пути, результатом которого является пройденное расстояние (гипотенуза прямоугольного треугольника);
  • SIN(РАДИАНЫ(B1)) – синус угла уклона, выраженного в радианах с помощью функции РАДИАНЫ.

В результате расчетов мы получили величину малого катета прямоугольного треугольника, который характеризует высоту подъема путешественника.

Таблица синусов и косинусов в Excel

Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?

Заполним столбцы значениями углов в градусах:

Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:

Вычислим значения для всех значений углов. Полученный результат:

Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.

Аналогичным способом создадим таблицу синусов в Excel:

Построение графика функций SINH и COSH в Excel

Пример 3. Построить графики функций sinh(x) и cosh(x) для одинаковых значений независимой переменной и сравнить их.

Формула для нахождения синусов гиперболических:

Формула для нахождения косинусов гиперболических:

Таблица полученных значений:

Построим графики обеих функций на основе имеющихся данных. Выделите диапазон ячеек A1:C12 и выберите инструмент «ВСТАВКА»-«Диаграммы»-«Вставь точечную (X,Y) или пузырьковую диаграмму»-«Точечная с гладкими кривыми и маркерами»:

Как видно, графики совпадают на промежутке (0;+∞), а в области отрицательных значений x части графиков являются зеркальными отражениями друг друга.

Особенности использования тригонометрических функций в Excel

Синтаксис функции SIN:

Синтаксис функции SINH:

Синтаксис функции COS:

Синтаксис функции COSH:

Каждая из приведенных выше функций принимает единственный аргумент число, который характеризует угол, заданный в радианах (для SIN и COS) или любое значение из диапазона вещественных чисел, для которого требуется определить гиперболические синус или косинус (для SINH и COSH соответственно).

  1. Если в качестве аргумента любой из рассматриваемых функций были переданы текстовые данные, которые не могут быть преобразованы в числовое значение, результатом выполнения функций будет код ошибки #ЗНАЧ!. Например, функция =SIN(“1”) вернет результат 0,8415, поскольку Excel выполняет преобразование данных там, где это возможно.
  2. В качестве аргументов рассматриваемых функций могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно.
  3. Все рассматриваемые функции могут быть использованы в качестве формул массива.
  1. Синус гиперболический рассчитывается по формуле: sinh(x)=0,5*(ex-e-x).
  2. Формула расчета косинуса гиперболического имеет вид: cosh(x)=0,5*( ex+e-x).
  3. При расчетах синусов и косинусов углов с использованием формул SIN и COS необходимо использовать радианные меры углов. Если угол указан в градусах, для перевода в радианную меру угла можно использовать два способа:
  • Функция РАДИАНЫ (например, =SIN(РАДИАНЫ(30)) вернет результат 0,5;
  • Выражение ПИ()*угол_в_градусах/180.
Читать еще:  Как сделать ячейку абсолютной в excel комбинация клавиш?

Как построить график синусоиды в Excel.

Допустим имеется функция синусоиды, заданной уравнением y=sin4*x. Формула в Excel имеет вид:

=SIN(4*C4)

Требуется построить график функции.

Функция в данном случае непрерывная, поэтому по оси x ограничим интервалом от 1 до -1, шаг возьмём 0,1.

В итоги у нас должна получится таблица вида:

Построение графиков тригонометрических функций с использованием MS Excel

Тип урока: урок обобщения и систематизации знаний

Цели:

  • научить строить графики тригонометрических функций средствами MS Excel
  • закрепить навыки работы в электронных таблицах,
  • углубить представления учащихся о взаимосвязи предметов и прикладной ориентации курса информатики.

Если вычислений много, а времени мало, то доверьтесь электронным таблицам

1. Сообщение целей и задач урока

– Ребята, сегодня мы продолжим знакомиться с возможностями электронных таблиц Excel. Давайте вспомним, для чего предназначены электронные таблицы? (Автоматизация расчетов).
– Что вы уже умеете делать в электронных таблицах? (Создавать и форматировать таблицу, работать с типами данных, решать задачи используя относительную и абсолютную ссылки, строить диаграммы).
– На уроках математики вы изучили тригонометрические функции и их графики. При построении графиков тригонометрических функций необходимо учесть множество нюансов. Начертить синусоиду или косинусоиду красиво – это уже искусство, а если необходимо график растянуть, сжать или симметрично отобразить относительно какой-либо оси – это может вызвать затруднения. И здесь нам на помощь нам придут электронные таблицы MS Excel. Вы узнаете как с их помощью быстро и красиво построить график.
Сегодня на уроке мы познакомимся с алгоритмом построения графика тригонометрической функции.
Эпиграфом к уроку я взяла слова «Если вычислений много, а времени мало, то доверьтесь электронным таблицам»

2. Актуализация знаний

Фронтальный опрос (за правильный ответ даем красную карточку)

  1. С чего начинается ввод формулы в ячейку? (Со знака равенства)
  2. На каком языке набирается формула в MS Excel? (Английском)
  3. Как скопировать формулу в другие ячейки?(С помощью маркера автозаполнения)
  4. Как изменить число десятичных знаков после запятой в отображаемом числе? (Выделить, Формат, Ячейки, вкладка Число, Числовой формат, …..)
  5. Что означает запись ###### в ячейке? (Длина водимых данных превышает ширину ячейки)
  6. Каким образом набирается формула, содержащая какую-либо функцию? (Выделить ячейку, в которую нужно вставить первое значение функции;Вставка, Функция, выбрать Категорию и саму функцию)
  7. Каким образом набирается формула, содержащая сложную функцию, например, y = |x 2 |? (Вставляется внешняя функция с пустым аргументом, затем левее строки редактирования формул из раскрывающегося списка выбирается внутренняя функция)
  8. Как вставить какой-либо символ, например, математический в ячейку? (Вставка, Символ, в появившемся диалоговом окне выбрать шрифт Symbol и нужный символ)

На прошлом уроке вы строили графики элементарных функций. Давайте повторим алгоритм построения графика (Учащиеся называют шаги построения графика функции, а учитель показывает соответствующий пункт алгоритма на доске (используется проектор) и если необходимо дополняет ответ учеников) (см. Приложение 1).

Читать еще:  Как сделать акт сверки в excel?

3. Изучение нового

С использованием презентации (см. Приложение 2) учитель рассказывает, как строится график тригонометрической функций, а затем выполняет его построение в электронных таблицах.

Задание. Построить в MS Excel графики функций y = Sin x и y = |1 – sin x| на промежутке [–360 о ; 360 о ] с шагом 15 о .

4. Закрепление полученных знаний

Каждому ученику даётся карточка с заданием и оценочный лист, который после выполнения задания отдается учителю (Каждый пункт в оценочном листе является шагом построения графика тригонометрической функции с использованием MSExcel). Презентация находится в сетевой папке, и любой ученик может ею воспользоваться при выполнении своего задания.

Задание. Построить в MS Excel графики функций на промежутке [–36 о ;36 о ] с шагом 15 о .

5. Проверка построенных графиков и разбор нюансов

Один из учеников строил график y = |Sin x| / Sin x на промежутке [–360 о ;360 о ] с шагом 15 о . На доске демонстрируется этот график и график, построенный традиционным алгебраическим способом.

С помощью этого примера обращается внимание учащихся, что существуют функции, графики которых в электронных таблицах строятся неточно. Учащихся можно попросить найти неточности в графике, построенном с помощью MS Excel и попросить объяснить их.

График, построенный традиционным алгебраическим

График, построенный с использованием МS Exel

6. Подведение итогов

Учеников просят ответить на вопросы:

  1. В чем достоинства и недостатки алгебраического метода построения графиков функций и построения графиков с использованием электронных таблиц?
  2. Каким образом можно использовать полученные на уроке знания в учебе?

Вывод. MS Excel облегчает построение графиков функций, но без глубоких математических знаний построить точные графики сложных функций (тригонометрических функций, функций с модулем, функций имеющих точки разрыва) невозможно.

Математика – это царица всех наук!

7. Постановка Д/З.

Построить график функции y= 1 + 0,5*ctg(X–П/4) на промежутке [–360 о ;360 о ] с шагом 15 о .

Тригонометрические функции SIN COS в Excel для синуса и косинуса

Функция SIN в Excel используется для вычисления синуса угла, заданного в радианах, и возвращает соответствующее значение.

Функция SINH в Excel возвращает значение гиперболического синуса заданного вещественного числа.

Функция COS в Excel вычисляет косинус угла, заданного в радианах, и возвращает соответствующее значение.

Функция COSH возвращает значение гиперболического косинуса заданного вещественного числа.

Читать еще:  Как сделать всплывающую картинку в excel в ячейку?

Примеры использования функций SIN, SINH, COS и COSH в Excel

Пример 1. Путешественник движется вверх на гору с уклоном в 17°. Скорость движения постоянная и составляет 4 км/ч. Определить, на какой высоте относительно начальной точке отсчета он окажется спустя 3 часа.

Для решения используем формулу:

  • B2*B3 – произведение скорости на время пути, результатом которого является пройденное расстояние (гипотенуза прямоугольного треугольника);
  • SIN(РАДИАНЫ(B1)) – синус угла уклона, выраженного в радианах с помощью функции РАДИАНЫ.

В результате расчетов мы получили величину малого катета прямоугольного треугольника, который характеризует высоту подъема путешественника.

Таблица синусов и косинусов в Excel

Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?

Заполним столбцы значениями углов в градусах:

Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:

Вычислим значения для всех значений углов. Полученный результат:

Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.

Аналогичным способом создадим таблицу синусов в Excel:

Построение графика функций SINH и COSH в Excel

Пример 3. Построить графики функций sinh(x) и cosh(x) для одинаковых значений независимой переменной и сравнить их.

Формула для нахождения синусов гиперболических:

Формула для нахождения косинусов гиперболических:

Таблица полученных значений:

Построим графики обеих функций на основе имеющихся данных. Выделите диапазон ячеек A1:C12 и выберите инструмент «ВСТАВКА»-«Диаграммы»-«Вставь точечную (X,Y) или пузырьковую диаграмму»-«Точечная с гладкими кривыми и маркерами»:

Как видно, графики совпадают на промежутке (0;+∞), а в области отрицательных значений x части графиков являются зеркальными отражениями друг друга.

Особенности использования тригонометрических функций в Excel

Синтаксис функции SIN:

Синтаксис функции SINH:

Синтаксис функции COS:

Синтаксис функции COSH:

Каждая из приведенных выше функций принимает единственный аргумент число, который характеризует угол, заданный в радианах (для SIN и COS) или любое значение из диапазона вещественных чисел, для которого требуется определить гиперболические синус или косинус (для SINH и COSH соответственно).

  1. Если в качестве аргумента любой из рассматриваемых функций были переданы текстовые данные, которые не могут быть преобразованы в числовое значение, результатом выполнения функций будет код ошибки #ЗНАЧ!. Например, функция =SIN(“1”) вернет результат 0,8415, поскольку Excel выполняет преобразование данных там, где это возможно.
  2. В качестве аргументов рассматриваемых функций могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно.
  3. Все рассматриваемые функции могут быть использованы в качестве формул массива.
  1. Синус гиперболический рассчитывается по формуле: sinh(x)=0,5*(ex-e-x).
  2. Формула расчета косинуса гиперболического имеет вид: cosh(x)=0,5*( ex+e-x).
  3. При расчетах синусов и косинусов углов с использованием формул SIN и COS необходимо использовать радианные меры углов. Если угол указан в градусах, для перевода в радианную меру угла можно использовать два способа:
  • Функция РАДИАНЫ (например, =SIN(РАДИАНЫ(30)) вернет результат 0,5;
  • Выражение ПИ()*угол_в_градусах/180.
Ссылка на основную публикацию
Adblock
detector